
CSE 150A-250A AI: Probabilistic Models

Lecture 17
Fall 2025
Trevor Bonjour
Department of Computer Science and Engineering
University of California, San Diego

Slides adapted from previous versions of the course (Prof. Lawrence, Prof. Alvarado, Prof Berg-Kirkpatrick)

1 / 32

Agenda

Review

Exploration vs Exploitation

Reinforcement Learning

Stochastic approximation theory

Temporal difference prediction

2 / 32

Review

Policy Improvement

• Greedy policy:

π′(s) = argmax
a

Qπ(s,a)

• Theorem:
The greedy policy π′(s) = argmaxa Qπ(s,a) improves
everywhere on the policy π from which it was derived:

Vπ′
(s) ≥ Vπ(s) for all states s ∈ S

4 / 32

Policy iteration

How to compute π∗?

1. Choose an initial policy π : S → A.

2. Repeat until convergence:

Compute the action value function Qπ(s,a).
Compute the greedy policy π′(s) = argmaxa Qπ(s,a).
Replace π by π′.

π0
evaluate
−−−−→ Vπ0 (s)

Qπ0 (s, a)
improve
−−−−→ π1

evaluate
−−−−→ Vπ1 (s)

Qπ1 (s, a)
improve
−−−−→ · · ·

5 / 32

Value iteration

• Idea in a nutshell

Replace the equality sign in the Bellman optimality
equation by an assignment operation:

V∗(s) = max
a

[
R(s) + γ

∑
s′
P(s′|s,a) V∗(s′)

]
BOE

Vnew(s) ←− max
a

[
R(s) + γ

∑
s′
P(s′|s,a) Vold(s′)

]
algorithm

6 / 32

Algorithm for value iteration

1. Initialize: Vo(s) = 0 for all s ∈ S .

2. Iterate until convergence:

Vk+1(s) = max
a

[
R(s) + γ

∑
s′
P(s′|s,a) Vk(s′)

]
for all s ∈ S.

3. Solve for optimal policy:

Qk(s,a) = R(s) + γ
∑
s′
P(s′|s,a) Vk(s′),

π∗(s) = lim
k→∞

argmax
a

Qk(s,a).

7 / 32

Value iteration (VI) versus policy iteration (PI)

• Compare and contrast:

PI searches through the combinatorial space of policies.
VI searches through the continuous space of value
functions.

• Convergence:

PI converges in a finite number of steps.
VI converges asymptotically (in the limit).

8 / 32

Exploration vs Exploitation

Multi-Armed Bandit

• Stateless MDP: N one-armed bandits.
• Each bandit pays a random reward from an unknown
probability distribution. Some bandits are more likely to
get a winning payoff than others.

• Goal: Maximize the total rewards of a sequence of lever
pulls.

10 / 32

Multi-Armed Bandit

Definition: A multi-armed bandit is defined by a set of random
variables Rat where:

• 1 ≤ a ≤ N, such that a is the arm of the bandit; and
• t the index of the play of arm a;

Successive plays are assumed to be independently distributed,
but we do not know the probability distributions of the
random variables.

11 / 32

MAB - Action Value

Action value can be estimated:

Q(a) = 1
N(a)

T∑
t=1

Rat

where t: number of rounds so far,
N(a): number of times a was selected in previous rounds
Rat : reward obtained in the round t for playing arm a.

12 / 32

Exploitation vs Exploration dilemma

Goal: Maximize the reward

• Ideally, keep playing the actions that have given us the
best reward.

• Initially, we do not have enough information to tell us
what the best actions are.

• We want strategies that exploit what we think are the best
actions so far, but still explore other actions.

But how much should we exploit and how much should we
explore? This is known as the exploration vs. exploitation
dilemma.

13 / 32

ε−first strategy

Explore the options uniformly for some time, and then once
we are confident we have enough samples (when the changes
to the Q(a) of start to stabilize), we exploit argmaxaQ(a).

ε determines how many rounds to select random actions
before moving to the greedy action.

Can we do better? Time is wasted equally in all actions using
the uniform distribution. Instead, we can focus on the most
promising actions given the rewards we have received so far.

14 / 32

ε−greedy strategy

With some probability, ε ∈ [0, 1]

• Choose a random arm with uniform probability. Update
Q(a).

With probability, 1 - ε

• Choose arm with maximum action value: argmaxaQ(a)

15 / 32

Reinforcement Learning

Reinforcement learning

 environment

 agent

 state st
 reward rt

 action at

Consider the model {S,A,P(s′|s,a),R(s)} defined by an MDP.

If we know the model, we can plan using policy or value iteration.

But what if we don’t know P(s′|s,a) and R(s)?

Can we learn an optimal policy directly from experience?

17 / 32

Model-based approach

• Estimate model from experience

Explore world and estimate P̂(s′|s,a) ≈ P(s′|s,a) from samples.
Compute π̂∗(s) or V̂∗(s) from P̂(s′|s,a).

• Benefits

A model P(s′|s,a) is useful for task transfer — to retain
knowledge when R(s) or γ change but P(s′|s,a) stays the same.

• Costs

P(s′|s,a) has O(n2) elements when |S| = n.
But π∗(s), V∗(s), and Q∗(s,a) have only O(n) elements.

Is it really necessary to estimate a model?

18 / 32

Model-free approach

• Haiku

It is possible
to optimize policies
without a model.

• But for this we need new tools:

Stochastic approximation theory
Temporal difference (TD) learning

19 / 32

Taking Averages Sample by Sample

Let’s say I’m playing a game where I can score between 1 and
10 points. What would you predict my score would be the next
time I play it? What if you knew that in the past, I have scored
these scores (not necessarily in this order)

8, 8, 2, 5, 7, 2, 5, 7, 1, 3
What score would you predict I will get?

A. 3

B. 5

C. 7

D. 9

E. 10

20 / 32

Stochastic approximation theory

How to estimate the mean of a random variable X from IID samples?

x1, x2, x3, x4, x5, x6, x7, x8, x9 . . .

1. Sample average

µT =
1
T
(
x1 + x2 + x3 + · · ·+ xT

)
This estimate converges to the mean by the law of large
numbers:

µT → E[X] as T →∞.

This is the most obvious estimate, but not the only one ...

21 / 32

Taking averages, sample by sample

Let’s average these numbers, in 5 iterations: 3, 5, 3, 8, 10

1. Score 3, Avg: 3
2. Score 5, Avg: (1/2)3 + (1/2)5 = 4
3. Score 3, Avg: (2/3)4 + (1/3)3 = (1 - 1/3)4 + (1/3)3 = 11/3
4. Score 8, Avg: (3/4)(11/3) + (1/4)8 = (1 - 1/4)(11/3) + (1/4)8 =
19/4

5. Score 10, Avg: (4/5) (19/4) + (1/5)10 = (1-1/5)(19/4) + (1/5)10
= 29/5 = 5.8

µt = (1− 1/t)µt−1 + (1/t)xt

αt = 1/t =⇒ µt = (1− αt)µt−1 + (αt)xt

µt = µt−1 + αt(xt − µt−1)

22 / 32

Taking Averages Sample by Sample

Let’s say I’m playing a game where I can score between 1 and
10 points. What would you predict my score would be the next
time I play it? What if you knew that in the past, I have scored
these scores in this order:

1, 2, 3, 2, 5, 7, 5, 7, 8, 8
Is your guess about my next score higher, lower or the same as
last time (5)?

A. Higher

B. Lower

C. The same

23 / 32

Stochastic approximation theory (con’t)

How to estimate the mean of a random variable X from IID samples?

x1, x2, x3, x4, x5, x6, x7, x8, x9, . . .
2. Incremental update

Initialize: µ0 = 0
Update: µt = (1−αt)µt−1 + αtxt for αt ∈ (0, 1)

The update is a convex sum of the old estimate and latest
sample.
It can also be written as:

µt = µt−1 + αt(xt − µt−1)

The corrective term xt−µt−1 is known as a temporal difference.
This is the simplest example of a temporal difference (TD)
update.

24 / 32

Temporal differences

• Update rule:

µt = µt−1 + αt(xt − µt−1)

Note how the corrective
term is small on average
when µt−1 ≈ E[X]

• Theorem: µt → E[X] as t→∞ with probability 1 if

(i)
∞∑
t=1

αt = ∞ (diverges)

and (ii)
∞∑
t=1

α2t < ∞ (converges)

• Intuition:

(i) αt decays sufficiently slowly to incorporate many examples
(ii) αt decays sufficiently fast to converge in the limit

25 / 32

Temporal differences

• Update rule:
µt+1 = µt + αt(xt+1 − µt)

Vt+1(st) = Vt(st) + αv(st)
[
xt − Vt(st)

]

But what is xt?
TD estimate of the expected future reward.

Vt+1(st) = Vt(st) + αv(st)
[
R(st) + γVt(st+1)− Vt(st)

]

26 / 32

Model-free policy evaluation

How to estimate Vπ(s) directly from experience w/o knowing
P(s′|s,a)?

• Explore state space via policy π

action π(s0) π(s1)
state s0 −−−−−−→ s1 −−−−−−→ s2 · · ·

reward r0 r1 r2 · · ·

• Bellman equation (BE)

Vπ(s) = R(s) + γ
∑
s′
P(s′|s, π(s))Vπ(s′)

• Temporal difference prediction

Initialize: V0(s) = 0 for all s ∈ S

Update: Vt+1(st) = Vt(st) + αv(st)
[
R(st) + γVt(st+1)− Vt(st)

]
27 / 32

Model-free policy evaluation

How to estimate Vπ(s) directly from experience w/o knowing
P(s′|s,a)?

• Explore state space via policy π

action π(s0) π(s1)
state s0 −−−−−−→ s1 −−−−−−→ s2 · · ·

reward r0 r1 r2 · · ·

• Bellman equation (BE)

Vπ(s) = R(s) + γ
∑
s′
P(s′|s, π(s))Vπ(s′)

• Temporal difference prediction

Initialize: V0(s) = 0 for all s ∈ S

Update: Vt+1(st) = Vt(st)︸ ︷︷ ︸
previous
estimate

+ αv(st)︸ ︷︷ ︸
step
size

[
R(st) + γVt(st+1)︸ ︷︷ ︸
sample from right side of BE

−Vt(st)
]

28 / 32

TD prediction

• Incremental, model-free update

The state value function Vπ(s) is iteratively re-estimated from
the most recent experience at each time step:

action π(st)
state st −−−−−−→ st+1

reward rt rt+1

Vt+1(st) = Vt(st) + αv(st)
[
R(st) + γVt(st+1)− Vt(st)

]

• Asymptotic convergence

Under suitable conditions, the TD update converges in the limit:

Vt(s)→ Vπ(s) as t→∞ for all s ∈ S

29 / 32

Theorem

Assume that each state s ∈ S is visited infinitely often by policy π.

Allow the step size αv(s) in each state s ∈ S to depend on the
number of previous visits v to the state.

Assume the step sizes satisfy:
∞∑
v=1

αv(s) = ∞ and
∞∑
v=1

α2v(s) < ∞.

Then the TD update

Vt+1(st) = Vt(st) + αv(st)
[
R(st) + γVt(st+1)− Vt(st)

]
converges with probability one:

Vt(s)→ Vπ(s) as t→∞.

30 / 32

Theory versus practice

• Theory

For rigorous guarantees of convergence, agents should
use step sizes that satisfy

∞∑
v=1

αv(s) = ∞ and
∞∑
v=1

α2v(s) < ∞.

• Practice

Many implementations choose small but constant step
sizes.

Remember — the MDP may only be an approximation to a
world that is not completely stationary!

In this situation, small constant step sizes are justified.
31 / 32

That’s all folks!

32 / 32

	Review
	Exploration vs Exploitation
	Reinforcement Learning
	Stochastic approximation theory
	Temporal difference prediction

